A render of an experimental setup for PLE spectroscopy of silicon implanted with erbium, using a superconducting single photon detector.
Erbium ions in solids have excellent spin and optical coherence properties, and have optical transitions in the Telecom C-band, making them compatible with fibre-optic infrastructure. We are studying the spin and optical properties of Erbium implanted in silicon, leveraging the maturity of silicon fabrication for device fabrication. This project aims to integrate single Erbium ions into silicon nanophotonic cavities. This has a range of applications: single photon sources, quantum networking, transduction.
Collaborators:
Prof. Matt Sellars, Dr. Rose Ahlefeldt (Australian National University),
Dr. John Bartholomew (University of Sydney),
Prof. Jeff McCallum (University of Melbourne),
Dr. Brett Johnson (Royal Melbourne Institure of Technology),
Prof. Chunming Yin (University of Science and Technology of China)
Highlights:
Berkman, I. R., Lyasota, A., de Boo, G. G., Bartholomew, J. G., Johnson, B. C., McCallum, J. C., Xu, B. B., Xie, S. Y., Ahlefeldt, R. L., Sellars, M. J., Yin, C. M. & Rogge, S. (2023). Observing Er3+ Sites in Si With an In Situ Single-Photon Detector. Physical Review Applied 19, 014037
A render of a superconducting resonator interfacing an atomically precise phosphorus double quantum dot qubit in silicon. Osika et al. (2022)
Spin-orbit semiconductor qubits are promising candidates for scale-up, with all-electrical control via electric dipole spin resonance (EDSR) and enhanced coupling via photons, phonons and mutual capacitance. Magnetic field resilient nonlinear superconducting devices are therefore an attractive medium for long range photonic interconnects. This project aims to integrate semiconductor-superconductor systems into a hybrid circuit quantum electrodynamics architecture.
Collaborators:
Scientia Prof. Michelle Simmons (University of New South Wales)
Prof. Rajib Rahman (University of New South Wales)
Highlights:
Krauth, F. N., Gorman, S. K., He, Y., Jones, M. T., Macha, P., Kocsis, S., ... & Simmons, M. Y. (2022). Flopping-mode electric dipole spin resonance in phosphorus donor qubits in silicon. Physical Review Applied, 17(5), 054006.
Osika, E. N., Kocsis, S., Hsueh, Y. L., Monir, S., Chua, C., Lam, H., ... & Rahman, R. (2022). Spin-photon coupling for atomic qubit devices in silicon. Physical Review Applied, 17(5), 054007.
Kobayashi, T., Salfi, J., Chua, C., Van Der Heijden, J., House, M. G., Culcer, D., ... & Rogge, S. (2021). Engineering long spin coherence times of spin–orbit qubits in silicon. Nature Materials, 20(1), 38-42.